Supersite Iceland

Ágúst Gunnar Gylfason
Risk analyst and operational commander National Crisis Coordination Centre
National Commissioner of the Icelandic Police
Department of Civil Protection and Emergency Management

© Ágúst Gunnar Gylfason
FUTUREVOLC background

Eyjafjallajökull 2010
Partners

- 26 partners from 9 countries
- Universities, Monitoring and research institutions, SEM’s, Civil Protection
FUTUREVOLC objectives

- Establish an integrated volcanological monitoring system through European collaboration.
- Develop new methods to evaluate volcanic crises.
- Increase scientific understanding of magmatic processes.
- Improve delivery of relevant information to civil protection and authorities.
FUTUREVOLC benefits

- The research in the project brought forth new understanding of magmatic processes
- Resources were pooled across Europe
- Personal and scientific networks were broadened
- Scientists became more aware of the importance and meaning of their work to society
- We got to know our scientists even better
Volcanic gas: forecast

Source: Icelandic Meteorological Office;
http://www.vedur.is/photos/photos_short/eldgos_mengun_dagur1.png
Volcanic gas: forecast

Source: Icelandic Meteorological Office; http://www.vedur.is/vedur/spar/gasdreifing
EU releases 14 million tons/day
30 – 60 million tons/day
SO₂ gas measurements
SO₂ Highest 10 min. peaks

- 200 µg/m³ before the eruption, close to Al smelter
- 650 µg/m³ September 11, Reyðarfjörður town
- 2.500 µg/m³ September 12, Reyðarfjörður town
- 4.000 µg/m³ September 13, Reyðarfjörður town
- 5.800 µg/m³ October 1, Reykjavík town
- 20.000 µg/m³ October 26, Höfn town
- 90.000 µg/m³ flight into the plume
- 130.000 µg/m³ scientist in the field

- 498 µg/m³ measured in Ireland Sept. 22
- 250 µg/m³ measured in Norway
- 235 µg/m³ measured in Austria Sept. 6
Blue haze (H$_2$SO$_4$)